Synthesis and Magnetic Properties of 3-D $\left[R u^{11 / I I I}{ }_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]_{3}\left[M^{I I I}(\mathrm{CN})_{6}\right]$
($\mathrm{M}=\mathrm{Cr}, \mathrm{Fe}, \mathrm{Co}$)
Yi Liao, William W. Shum, and Joel S. Miller*
Department of Chemistry, University of Utah, 315 South 1400 East Room 2124, Salt Lake City, Utah 84112-0850
Received April 17, 2002

In the pursuit of new molecule-based magnets, ${ }^{1}$ the diruthenium tetraacetate cation, $\left[\mathrm{Ru}^{\mathrm{II} / I_{2}}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]^{+}(\mathbf{1})$, is an intriguing building block. 1 has a high-spin $S=3 / 2$ ground state due to the accidental

degeneracy of the π^{*} and δ^{*} HOMOs, ${ }^{2}$ an unusually large zerofield splitting, $D=+53 \pm 24 \mathrm{~cm}^{-1},{ }^{2 \mathrm{~b}, 3}$ and the ability to add one or two ligands axial to the $\mathrm{Ru}-\mathrm{Ru}$ bond. Several extended structures based on $\mathbf{1}$ have been reported. ${ }^{4-6}$ However, even when the structure is bridged with organic radicals such as nitroxides, albeit antiferromagnetically coupled, magnetic ordering does not occur. ${ }^{6 a}$ We report herein $\left[\mathrm{Ru}^{\mathrm{II} / I I}{ }_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]_{3}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{CN})_{6}\right][\mathrm{M}=\mathrm{Cr}(\mathbf{2}), \mathrm{Fe}(\mathbf{3})$, $\mathrm{Co}(4)]$ and their magnetic properties, including magnetic ordering at 33 K for $\mathbf{2}$, a rare example of a magnet containing a second-row transition metal.

Compounds 2-4 form upon addition of an aqueous solution of $\mathrm{K}_{3}\left[\mathrm{M}^{\mathrm{II}}(\mathrm{CN})_{6}\right]$ to a freshly prepared aqueous solution containing a stoichiometric amount of $\left[\mathrm{Ru}^{\mathrm{II} / I I I}{ }_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right] \mathrm{Cl}$ in an inert atmosphere. ${ }^{7}$ The v_{CN} IR spectrum shows single sharp absorptions at 2138, 2116, and $2125 \mathrm{~cm}^{-1}$ for $\mathbf{2 - 4}$, respectively, consistent with maintaining octahedral symmetry about the $\mathrm{M}^{\mathrm{III}}$ site. In addition, all three compounds show characteristic asymmetric and symmetric $\nu(\mathrm{OCO})$ bands at 1444 and $1403 \mathrm{~cm}^{-1}$ and a $\delta\left(\mathrm{CO}_{2}\right)$ band at 691 cm^{-1} for $\mathbf{1} .{ }^{8}$ On the basis of the stoichiometry and ability of $\mathbf{1}$ to axially coordinate to the N of cyanide, $2-\mathbf{4}$ are proposed to form a 3-D network structure with $-\mathrm{M}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Ru}=\mathrm{Ru}-\mathrm{N} \equiv \mathrm{C}-\mathrm{M}-$ linkages along all three Cartesian axes, as illustrated in Figure 1. A related motif is observed for the Prussian blue family of magnetic materials. ${ }^{9}$

The powder diffraction patterns of $\mathbf{2 - 4}$ can be indexed ${ }^{10}$ to isomorphous body-centered cubic structures with $a=13.34,13.30$, and $13.10 \AA$, respectively. On the basis of the structures of $\left[\mathrm{M}(\mathrm{CN})_{6}\right]^{3-11}$ and $\mathbf{1},{ }^{3}$ the $\mathrm{M} \cdots \mathrm{M}$ linkage separation $a \approx 13 \AA$ and $a_{\mathrm{Co}}<a_{\mathrm{Fe}}<a_{\mathrm{Cr}}$ are expected, as observed. Hence, the diffraction data are consistent with the structure in Figure 1. The body-centered space group indicates a second independent lattice interpenetrating the first lattice, as observed, for example for $\mathrm{Mn}\left[\mathrm{C}(\mathrm{CN})_{3}\right]_{2} .^{12}$

The magnetic susceptibilities, χ, of $\mathbf{2 - 4}$ were studied using a SQUID magnetometer between 2 and 300 K . The effective moments, $\mu_{\text {eff }}\left[=(8 \chi T)^{1 / 2}\right]$ at 300 K for $\mathbf{2 - 4}$ are $7.72,7.30$, and $7.26 \mu_{\mathrm{B}}$, respectively. These values are in good agreement for the summation of independent spins based on the Curie-Weiss equation, eq 1, i.e., $7.75,6.93$, and $6.71 \mu_{\mathrm{B}}$. Modeling of $\mu_{\text {eff }}(T)$ (Figure 2) is more complex, as although the M site can be modeled

[^0]\[

$$
\begin{equation*}
\chi_{\mathrm{M}}=\frac{N g^{2} \mu_{\mathrm{B}}^{2}}{3 k_{\mathrm{B}}(T-\theta)}[S(S+1)] \tag{1}
\end{equation*}
$$

\]

with eq 1 , the ruthenium(II/III) dimer is known to have a large zero-field splitting (D) and a temperature-independent paramagnetic (TIP) component, and its contribution to $\chi(T)$ can be described by eq $2 ;{ }^{2 \mathrm{bb}, 6,13}$ eq 3 can be used to model the expected $\chi(T)$ for $2-\mathbf{4}$. The Weiss constant, θ, is introduced to roughly simulate the magnetic interactions between the paramagnetic species.

$$
\begin{gather*}
\chi_{\mathrm{Ru}_{2}}=\frac{N g^{2} \mu_{\mathrm{B}}^{2}}{k_{\mathrm{B}}(T-\theta)}\left[\frac{1}{3} \frac{1+9 \mathrm{e}^{-2 \mathrm{D} / k_{\mathrm{B}} T}}{4\left(1+\mathrm{e}^{-2 \mathrm{D} / k_{\mathrm{B}} T}\right)}+\right. \\
\left.\frac{2}{3} \frac{1+\left(3 k_{\mathrm{B}} T / 4 D\right)\left(1-\mathrm{e}^{-2 \mathrm{D} / k_{\mathrm{B}} T}\right)}{1+\mathrm{e}^{-2 \mathrm{D} / k_{\mathrm{B}} T}}\right]+\mathrm{TIP} \tag{2}\\
\chi_{\text {Tot }}=3 \chi_{\mathrm{Ru}_{2}}+\chi_{\mathrm{M}} \tag{3}
\end{gather*}
$$

As $\mathrm{Co}^{\text {III }}$ is diamagnetic, for $T>2 \mathrm{~K}, \mu_{\text {eff }}(T)$ for $\mathbf{4}$ can be fit by eq 2, with $D=69.4 \mathrm{~cm}^{-1}$, $\mathrm{TIP}_{\mathrm{Ru}_{2}}=800 \times 10^{-6} \mathrm{emu} / \mathrm{mol}, \theta=0$ $\mathrm{K}, g_{\mathrm{Ru}_{2}}=2.04$, and the chi-squared agreement factor ${ }^{14}$ is $\sum\left(\mu_{\mathrm{exp}}-\right.$ $\left.\mu_{\text {calc }}\right)^{2} / \mu_{\text {exp }}=2.823 \times 10^{-3}$ (Figure 2). This is in accord with magnetic behavior observed for several other complexes containing $1 .{ }^{6}$

In contrast to the case for $\mathbf{4}$, eq 3 fits $\mu_{\text {eff }}(T)$ only above 120 and 8 K for $\mathbf{2}$ and 3, respectively (Figure 2). For 2, the data can be fit with $D=69.4 \mathrm{~cm}^{-1}, \theta=-40 \mathrm{~K}, \mathrm{~g}_{\mathrm{Ru} \mathrm{u}_{2}}=2, g_{\mathrm{Fe}}=2$, and $\mathrm{TIP}_{\mathrm{Ru}_{2}}=$ $700 \times 10^{-6} \mathrm{emu} / \mathrm{mol}\left(\right.$ chi-squared $=5.511 \times 10^{-3}$). The fitting parameters indicate significant antiferromagnetic coupling between adjacent spin sites. Upon decreasing T for $\mathbf{2}, \mu_{\text {eff }}(T)$ increases below $\sim 50 \mathrm{~K}$, reaching a maximum value of $30.9 \mu_{\mathrm{B}}$ at 32 K prior to abruptly decreasing to $3.65 \mu_{\mathrm{B}}$ at 2 K (Figure 2).

Figure 1. Proposed 3-D body-centered, interpenetrating network structure for $\left[\mathrm{Ru}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{4}\right]_{3}\left[\mathrm{M}^{\mathrm{III}}(\mathrm{CN})_{6}\right](\mathrm{M}=\mathrm{Cr}, \mathrm{Fe}, \mathrm{Co})$; the bridging acetates, rotated 45° with respect to $\left[\mathrm{M}^{\mathrm{III}}(\mathrm{CN})_{6}\right]^{3-}$, are not shown for clarity.

Figure 2. $\mu_{\text {eff }}(T)$ and the fit to the higher temperature data with eqs 2 and 3 for $\mathbf{2}$ (top) and $\mathbf{3}$ and $\mathbf{4}$ (bottom).

Figure 3. (a) Alternating current $\chi^{\prime}(T)$ and $\chi^{\prime \prime}(T)$ at $9.9,99$, and 999 Hz . (b) $M(H)$ showing a constricted hysteresis loop for 2 .

This behavior is indicative of magnetic ordering. To confirm that 2 magnetically orders, the in-phase $\left(\chi^{\prime}\right)$ and out-of-phase $\left(\chi^{\prime \prime}\right)$ alternating current susceptibilities were taken and show frequencyindependent peaks for both $\chi^{\prime}(T)$ at 32 K and $\chi^{\prime \prime}(T)$ at 34 K , confirming that 1 orders with $T_{\mathrm{c}}=33 \pm 1 \mathrm{~K}$ (Figure 3a). The field dependence of the magnetization, $M(H)$, approaches saturation at 2 kOe and saturates to a value of $17870 \mathrm{emu} \cdot \mathrm{Oe} / \mathrm{mol}$ at 2 K (Figure 3b). Assuming $g=2$, a saturation magnetization, M_{s}, of $67000 \mathrm{emu} \cdot \mathrm{Oe} / \mathrm{mol}$ is expected for ferromagnetic coupling, while a value of $33500 \mathrm{emu} \cdot \mathrm{Oe} / \mathrm{mol}$ is expected for antiferromagnetic coupling. Antiferromagnetic coupling as observed for the 1-D chain of $\mathbf{1}($ NITPh $)\left(\right.$ NITPh $=$ phenyl nitronyl nitroxide), ${ }^{6 a}$ leading to ordering as a ferrimagnet, is expected for $\mathbf{2}$. The observed value is one-half the expectation for the latter, and this low value may be due to the large D of the ruthenium dimer, since for $T \ll D$, only the $S=\frac{1}{2}$ state is significantly populated at 2 K . An applied field
leads to a small increase in M, which for a metamagnet increases above ~ 800 Oe prior to saturation. Hysteresis with a very unusual constricted shape is observed at 2 K (Figure 3 b). The remanent magnetization at 2 K is $3700 \mathrm{emu} \cdot \mathrm{Oe} / \mathrm{mol}$. Constricted hysteretic behavior and reduced M_{s} have been attributed to metamagnetism caused by canted spins, ${ }^{11 \mathrm{~b}}$ and this phenomenon is under further study.

Above $8 \mathrm{~K}, \mu_{\text {eff }}(T)$ for 3 can be fit by eq 3 (Figure 3). The data can be fit with $D=69.4 \mathrm{~cm}^{-1}, \theta=0.7 \mathrm{~K}, g_{\mathrm{Ru}_{2}}=2.075, g_{\mathrm{Fe}}=2$, and $\mathrm{TIP}_{\mathrm{Ru}_{2}}=400 \times 10^{-6} \mathrm{emu} / \mathrm{mol}\left(\right.$ chi-squared $\left.=2.448 \times 10^{-3}\right)$. The divergence at 8 K suggests a transition from short-range ferromagnetic interaction to long-range magnetic ordering. Upon decreasing T for $\mathbf{3}, \mu_{\text {eff }}(T)$ increases sharply at $\sim 10 \mathrm{~K}$, reaching $19.2 \mu_{\mathrm{B}}$ at 2 K (Figure 3). $\chi^{\prime}(T)$ and $\chi^{\prime \prime}(T)$ increase with decreasing temperature, but peaks are not present above 2 K . These data suggest that the onset of magnetic ordering occurs below 2 K .

These initial studies show that $\mathbf{1}$ can be used as a building block for the formation of molecule-based magnets.

Acknowledgment. The authors gratefully acknowledge partial support from the U.S. National Science Foundation (Grant No. CHE 0110685), the Air Force Office of Scientific Research (Grant No. F49620-00-1-0055,) U.S. DOE (Grant No. DE FG 03-93ER45504), and the ACS PRF (Grant No, 36165-AC5).

References

(1) (a) Ovcharenko, V. I.; Sagdeev, R. Z. Russ. Chem. Rev. 1999, 68, 345. Day, P. J. Chem. Soc., Dalton Trans. 1997, 701. Miller, J. S.; Epstein, A. J. Chem. Eng. News 1995, 73 (40), 30. Miller, J. S.; Epstein, A. J. Adv. Chem. Ser. 1995, 245, 161. Miller, J. S.; Epstein, A. J. Angew. Chem., Int. Ed. Engl. 1994, 33, 385. (b) Miller, J. S.; Epstein, A. J. Chem. Соттип. 1998, 1319.
(2) (a) Norman, J. G., Jr.; Renzoni, G. E.; Case, D. A. J. Am. Chem. Soc. 1979, 101, 5256. (b) Miskowiski, V. M.; Hopkins, M. D.; Winkler, J. R.; Gray, H. B. In Inorganic Electronic Structure and Spectroscopy; Solomon, E. I., Lever, A. B. P., Eds.; John Wiley \& Sons: New York, 1999; Vol. 2, Chapter 6.
(3) Telser, J.; Drago, R. S. Inorg. Chem. 1984, 23, 3114. Cukiernik, F. D.; Giroud-Godquin, A. M.; Maldivi, P.; Marchon, J. C. Inorg. Chim. Acta 1994, 215, 203. Handa, M.; Sayama, Y.; Mikuriya, M.; Nukada, R.; Hiromitsu, I.; Kasuga, K. Bull. Chem. Soc. Jpn. 1998, 71, 119. JimenezApraricio, R.; Urbanos, F. A.; Arrieta, J. M. Inorg. Chem. 2001, 40, 613.
(4) Beck, E. J.; Drysdale, K. D.; Thompson, L. K.; Li, L.; Murphy, C. A.; Aquino, M. A. S. Inorg. Chim. Acta 1998, $279,121$.
(5) Cotton, F. A.; Lu, J.; Yokochi, A. Inorg. Chim. Acta 1998, 275-276, 447. Cotton, F. A.; Kim, Y.; Ren, T. Inorg. Chem. 1992, 31, 2723. Cotton, F. A.; Kim, Y.; Ren, T. Polyhedron 1993, 12, 607. Cotton, F. A.; Matusz, M.; Zhong, B. Inorg. Chem. 1988, 27, 4368.
(6) (a) Handa, M.; Sayama, Y.; Mikuriya, M.; Nukada, R.; Hiromitsu, I.; Kasuga, K. Chem. Lett. 1996, 201. Sayama, Y.; Handa, M.; Mikuriya, M.; Hiromitsu, I.; Kasuga, K. Chem. Lett. 1998, 777. (b) Handa, M.; Sayama, Y.; Mikuriya, M.; Nukada, R.; Hiromitsu, I.; Kasuga, K. Bull. Chem. Soc. Jpn. 1995, 64, 1647.
(7) After the solution was stirred for 2 h , the product was collected by filtration and dried in a vacuum. Once separated, the products are stable in air. Elemental analysis gave satisfactory results. (Calcd for 2: C, 23.66; H, 2.38; N, 5.52. Obsd: C, 23.82; H, 2.48; N, 5.72. Calcd for 3: C, 23.60; H, 2.38; N, 5.50. Obsd: C, 23.68; H, 2.41; N, 5.14. Calcd for 4: C, 23.55; H, 2.37; N, 5.49. Obsd: C, 23.37; H, 2.13; N, 5.28.)
(8) Drysdale, K. D.; Beck, E. J.; Cameron, T. S.; Robertson, K. N.; Aquino, M. A. S. Inorg. Chim. Acta 1997, 256, 243. Miskowiski, V. M.; Gray, H. B. Inorg. Chem. 1988, 27, 2501.
(9) E.g.: Mallah, S.; Thiebaut, S.; Verdauguer, M.; Veillet, P. Science 1993, 262, 1554. Ferlay, S.; Mallah, T.; Ouahes, R.; Veillet, P.; Verdauguer, M. Nature 1995, 378, 701. Entley, W. R.; Girolani, G. S. Inorg. Chem. 1994, 33, 5165.
(10) CMPR distributed by NIST: http://webster.nenr.nist.gov/programs/crystallography/software/cmpr/
(11) E.g.: (a) Ohba, M.; Usuki, N.; Fukita, N.; Okawa, H. Inorg. Chem. 1998, 37, 3349 . Ferlay, S.; Mallah, T.; Vaissermann, J.; Bartolome, F.; Veillet, P.; Verdauguer, M. J. Chem. Soc., Chem. Commun. 1996, 2481. Re, N.; Crescenzi, R.; Floriani, C.; Miyasaka, H.; Matsumoto, N. Inorg. Chem. 1998, 37, 2717. Lu, J.; Harrison, W. T. A.; Jacobson, A. J. J. Chem. Soc., Chem. Commun. 1996, 399. (b) Ohba, M.; Okawa, H.; Fukita, N.; Hashimoto, Y. J. Am. Chem. Soc. 1997, 119, 1011.
(12) Manson, J. L.; Campana, C.; Miller, J. S. J. Chem. Soc., Chem. Commun. 1998, 251. Miller, J. S. Adv. Mater. 2001, 13, 525.
(13) (a) O’Connor, C. J. Prog. Inorg. Chem. 1982, 29, 203. (b) Telser, J.; Drago, R. S. Inorg. Chem. 1985, 24, 4765.
(14) Taylor, J. R. An Introduction to Error Analysis; University Science Books: Mill Valley, CA, 1982; p 223.
JA020552C

[^0]: * To whom correspondence should be addressed. E-mail: jsmiller@chem.utah.edu.

